###
有色金属(冶炼部分):2024,(2):1-7
本文二维码信息
码上扫一扫!
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测
马朝君1, 彭巨擘1, 袁海滨1, 郑光发2, 么长慧1, 章夏冰1, 冯早2
(1.云南锡业集团控股有限责任公司研发中心;2.昆明理工大学信息工程与自动化学院)
Energy Consumption Prediction of Tin Smelting Based on Grey Wolf Optimized Support Vector Machine Regression and SHAP Values
摘要
图/表
参考文献
相似文献
本文已被:浏览 812次   下载 698
投稿时间:2023-10-23    修订日期:2023-11-02
中文摘要: 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。
Abstract:The comprehensive energy consumption of tin smelting process accounts for 90% of the entire tin production process, which has great energy-saving potential. Address to the difficulty in establishing the comprehensive energy consumption mechanism model of tin smelting process and the low prediction accuracy, the Gray Wolf Optimization Support Vector Machine Regression (GWO-SVR) model was proposed to predict the comprehensive energy consumption of tin smelting process. Taking a tin smelter as an example, the proposed model was compared with the SVR, RF (Random Forest), BP (Back Propagation Neural Network) and LR (Linear Regression) models. The results show that the GWO-SVR model yields the most desirable prediction results, and has great advantages over other machine learning algorithms in terms of prediction accuracy. Furthermore, using SHAP values to explain the GWO-SVR model from both global interpretation and single-sample interpretation and visualize the contribution of features to the output increases the interpretability of GWO-SVR, and thus develops a reliable energy-saving strategy.
文章编号:     中图分类号:    文献标志码:
基金项目:云南省科技厅基础研究合作项目(202101BC070001-023)
引用文本:
马朝君,彭巨擘,袁海滨,郑光发,么长慧,章夏冰,冯早.基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测[J].有色金属(冶炼部分),2024(2):1-7.
MA Chaojun,PENG Juzhang,YUAN Haibin,ZHENG Guangfa,MU Changhui,ZHANG Xiabing,FENG Zao.Energy Consumption Prediction of Tin Smelting Based on Grey Wolf Optimized Support Vector Machine Regression and SHAP Values[J].Nonferrous Metals (Extractive Metallurgy),2024(2):1-7.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299752/63299758

联系我们

电话:010-63299752/63299758

传真:010-63299744

QQ:XXXXXXX

Email:ysyl@bgrimm.com

邮编:100160

地址:北京市南四环西路188号总部基地18区23号楼

关注微信公众号