###
有色金属(冶炼部分):2024,(12):35-42
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于GRNN算法的铜阳极炉精炼还原终点预报模型
舒波1, 王恩志1, 徐建新2, 陈习堂1, 任军祥1, 俞建明1, 高荣1, 王华2
(1.楚雄滇中有色金属有限责任公司;2.昆明理工大学复杂有色金属资源清洁利用国家重点实验室)
Prediction Model for Copper Anode Furnace Refining Reduction Endpoint based on GRNN Algorithm
摘要
图/表
参考文献
相似文献
本文已被:浏览 390次   下载 118
投稿时间:2024-06-26    修订日期:2024-07-15
中文摘要: 针对阳极炉炼铜还原期终点判断依赖人工判断的局限,利用机器学习技术实现智能判断。通过图像去模糊处理优化图像特征,对图像进行灰度差分矩阵运算,将矩阵中提取出的特征值作为神经网络的输入,构建了一种新的铜阳极炉精炼还原期终点判断模型。试验结果显示,在真实生产环境下,采用GRNN算法对还原终点进行预测,有助于消除铜阳极炉精炼过程中不同指标之间的相关性,减少了数据冗余和系统误差,使预测精度提高至96.54%。相较于传统方法,这种新的判断模型有效提高了阳极炉炼铜还原期终点判断的准确性。
Abstract:Address to limitations of relying on manual judgment for determining the endpoint of reduction period in copper smelting in anode furnaces, machine learning techniques was utilized to achieve intelligent judgment. Image feature optimization was performed through image deblurring, followed by grayscale difference matrix operation on the images. The extracted feature values from the matrix were used as inputs to a neural network, a novel model for determining the endpoint of the reduction period in copper smelting in anode furnaces was established. Experimental results demonstrate that employing the GRNN algorithm for predicting the reduction endpoint effectively eliminates correlations among different indicators during copper smelting, thereby reducing data redundancy and system errors, leading to an improved prediction accuracy of 96.54% in real production environments. Compared to traditional methods, this new judgment model significantly enhances the accuracy of determining the endpoint of the reduction period in copper smelting in anode furnaces.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(52166004);国家重点研发计划项目(2022YFC3902000);云南省重大科技专项(202202AG050007,202202AG050002)
引用文本:
舒波,王恩志,徐建新,陈习堂,任军祥,俞建明,高荣,王华.基于GRNN算法的铜阳极炉精炼还原终点预报模型[J].有色金属(冶炼部分),2024(12):35-42.
SHU Bo,WANG Enzhi,XU Jianxin,CHEN Xitang,REN Junxiang,YU Jianming,GAO Rong,WANG Hua.Prediction Model for Copper Anode Furnace Refining Reduction Endpoint based on GRNN Algorithm[J].Nonferrous Metals (Extractive Metallurgy),2024(12):35-42.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299752/63299758

联系我们

电话:010-63299752/63299758

传真:010-63299744

QQ:XXXXXXX

Email:ysyl@bgrimm.com

邮编:100160

地址:北京市南四环西路188号总部基地18区23号楼

关注微信公众号