###
有色金属(冶炼部分):2025,(5):27-35
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于主动学习的浸出过程pH稳定控制研究
陈宇1, 黄煜栋1, 刘学斌2, 李海生1, 劳佳锋1
(1.杭州科技职业技术学院;2.中南大学 自动化学院)
Active Learning Fuzzy Rule Extraction from Zinc Leaching Process for Decision-Making
摘要
图/表
参考文献
相似文献
本文已被:浏览 50次   下载 23
投稿时间:2024-10-18    修订日期:2024-12-25
中文摘要: 在湿法炼锌的中性浸出过程中,pH的稳定性直接影响产品的生产质量。针对传统人工控制方法在应对溶剂浓度波动和大时滞所带来的pH稳定控制难题,提出了一种基于主动学习分类的模糊规则提取策略。通过深入分析过程机理,将中性浸出过程细分为多个典型工况。利用近似线性依赖方法和主动学习算法,从大量历史数据中精确筛选出代表典型工况的信息样本。随后,采用支持向量机算法,在不同的工况下提取支持向量,并构建模糊规则集。通过实际工业数据的案例进行仿真验证,结果表明,该方法在不同工况下的pH控制合格率高达93.17%,方差低至0.011,充分验证了算法的有效性与实用性。该成果为中性浸出过程的pH稳定控制提供了坚实而有效的支撑。
Abstract:In the neutral leaching process of zinc hydrometallurgy, the stability of pH value directly affects the quality of the product. A fuzzy rule extraction strategy based on active learning classification was proposed to address the challenge of pH value stability control caused by solvent concentration fluctuations and large time delays in traditional manual control methods. The neutral leaching process was subdivided into multiple typical operating conditions by in-depth analysis of the process mechanism. Employing the approximate linear dependency method and active learning algorithm, the information samples representing typical working conditions were accurately screened from a large number of historical data. Then, the support vector machine algorithm was used to extract support vectors under different operating conditions and a fuzzy rule set was constructed. The results show that the qualified rate of pH value control under different working conditions is as high as 93.17%, and the variance is as low as 0.011, which fully verifies the effectiveness and practicability of the algorithm. The results provide a solid and effective support for pH stability control in neutral leaching process.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省自然科学基金联合基金资助项目(LHZY24A010006);浙江省教育厅一般项目(Y202455590,Y202352510)
引用文本:
陈宇,黄煜栋,刘学斌,李海生,劳佳锋.基于主动学习的浸出过程pH稳定控制研究[J].有色金属(冶炼部分),2025(5):27-35.
CHEN Yu,HUANG Yudong,LIU Xuebin,LI Haisheng,LAO Jiafeng.Active Learning Fuzzy Rule Extraction from Zinc Leaching Process for Decision-Making[J].Nonferrous Metals (Extractive Metallurgy),2025(5):27-35.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299752/63299758

联系我们

电话:010-63299752/63299758

传真:010-63299744

QQ:XXXXXXX

Email:ysyl@bgrimm.com

邮编:100160

地址:北京市南四环西路188号总部基地18区23号楼

关注微信公众号